Tail asymptotic of discounted aggregate claims with compound dependence under risky investment
Fenglong Guo,
Dingcheng Wang and
Jiangyan Peng
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 4, 810-830
Abstract:
This paper considers the tail asymptotic of discounted aggregate claims with compound dependence under risky investment. The price of risky investment is modeled by a geometric Lévy process, while claims are modeled by a one-sided linear process whose innovations further obeying a so-called upper tail asymptotic independence. When the innovations are heavy tailed, we derive some uniform asymptotic formulas. The results show that the linear dependence has significant impact on the tail asymptotic of discounted aggregate claims but the upper tail asymptotic independence is negligible.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1417437 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:4:p:810-830
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1417437
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().