Computational analysis of the queue with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy
Tao Jiang and
Baogui Xin
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 4, 926-941
Abstract:
This paper considers a single server queueing system with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy. At a breakdown instant, the system either goes to repair period immediately with probability p, or continues to provide auxiliary service for the current customers with probability q = 1 − p. While the system resides in the auxiliary service period, it may go to repair period if there is no customer at the epoch of service completion or the occurrence of breakdown. By using the matrix analytic method and the spectral expansion method, we respectively obtain the steady state distribution to make the straightforward computation of performance measures and the Laplace-Stieltjes transform of the stationary sojourn time of an arbitrary customer. In addition, some numerical examples are presented to show the impact of parameters on the performance measures.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2017.1422756 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:4:p:926-941
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2017.1422756
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().