Fitting competing risks data to bivariate Pareto models
Jia-Han Shih,
Wei Lee,
Li-Hsien Sun and
Takeshi Emura
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 5, 1193-1220
Abstract:
This paper revisits two bivariate Pareto models for fitting competing risks data. The first model is the Frank copula model, and the second one is a bivariate Pareto model introduced by Sankaran and Nair (1993). We discuss the identifiability issues of these models and develop the maximum likelihood estimation procedures including their computational algorithms and model-diagnostic procedures. Simulations are conducted to examine the performance of the maximum likelihood estimation. Real data are analyzed for illustration.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1425450 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:5:p:1193-1220
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1425450
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().