EconPapers    
Economics at your fingertips  
 

A new infinitely divisible discrete distribution with applications to count data modeling

Deepesh Bhati and Hassan S. Bakouch

Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 6, 1401-1416

Abstract: A new discrete distribution involving geometric and discrete Pareto as special cases is introduced. The distribution possesses many interesting properties like decreasing hazard rate, zero vertex uni-modality, over-dispersion, infinite divisibility and compound Poisson representation, which makes the proposed distribution well suited for count data modeling. Other issues including closure property under minima, comparison of its distribution tail with other distributions via actuarial indices are discussed. The method of proportion and maximum likelihood method are presented for parameter estimation. Finally the performance of the proposed distribution over other classical and newly proposed infinitely divisible distributions are discussed.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1433847 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:6:p:1401-1416

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1433847

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:48:y:2019:i:6:p:1401-1416