Matching a correlation coefficient by a Gaussian copula
Qing Xiao and
Shaowu Zhou
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 7, 1728-1747
Abstract:
A Gaussian copula is widely used to define correlated random variables. To obtain a prescribed Pearson correlation coefficient of ρx between two random variables with given marginal distributions, the correlation coefficient ρz between two standard normal variables in the copula must take a specific value which satisfies an integral equation that links ρx to ρz. In a few cases, this equation has an explicit solution, but in other cases it must be solved numerically. This paper attempts to address this issue. If two continuous random variables are involved, the marginal transformation is approximated by a weighted sum of Hermite polynomials; via Mehler’s formula, a polynomial of ρz is derived to approximate the function relationship between ρx and ρz. If a discrete variable is involved, the marginal transformation is decomposed into piecewise continuous ones, and ρx is expressed as a polynomial of ρz by Taylor expansion. For a given ρx, ρz can be efficiently determined by solving a polynomial equation.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1439962 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:7:p:1728-1747
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1439962
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().