EconPapers    
Economics at your fingertips  
 

Markov switch smooth transition HYGARCH model: Stability and estimation

Ferdous Mohammadi Basatini and Saeid Rezakhah

Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 10, 2384-2409

Abstract: HYGARCH model is basically used to model long-range dependence in volatility. We propose Markov switch smooth-transition HYGARCH model, where the volatility in each state is a time-dependent convex combination of GARCH and FIGARCH. This model provides a flexible structure to capture different levels of volatilities and also short and long memory effects. The necessary and sufficient condition for the asymptotic stability is derived. Forecast of conditional variance is studied by using all past information through a parsimonious way. Bayesian estimations based on Gibbs sampling are provided. A simulation study has been given to evaluate the estimations and model stability. The competitive performance of the proposed model is shown by comparing it with the HYGARCH and smooth-transition HYGARCH models for some period of the S&P500 and Dow Jones industrial average indices based on volatility and value-at-risk forecasts.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1576884 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:10:p:2384-2409

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2019.1576884

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:49:y:2020:i:10:p:2384-2409