Asymptotic cumulants of the minimum phi-divergence estimator for categorical data under possible model misspecification
Haruhiko Ogasawara
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 10, 2448-2465
Abstract:
The asymptotic cumulants of the minimum phi-divergence estimators of the parameters in a model for categorical data are obtained up to the fourth order with the higher-order asymptotic variance under possible model misspecification. The corresponding asymptotic cumulants up to the third order for the studentized minimum phi-divergence estimator are also derived. These asymptotic cumulants, when a model is misspecified, depend on the form of the phi-divergence. Numerical illustrations with simulations are given for typical cases of the phi-divergence, where the maximum likelihood estimator does not necessarily give best results. Real data examples are shown using log-linear models for contingency tables.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1576888 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:10:p:2448-2465
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1576888
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().