Estimation of population distribution function involving measurement error in the presence of non response
Mazhar Yaqub and
Javid Shabbir
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 10, 2540-2559
Abstract:
This article addresses the problem of estimating population distribution function for simple random sampling in the presence of non response and measurement error together. We suggest a general class of estimators for estimating the cumulative distribution function using the auxiliary information. The expressions for the bias and mean squared error are derived up to the first order of approximation. The performance of the proposed class of estimators is compared with considered estimators both theoretically and numerically. A real data set is used to support the theoretical findings.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1580738 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:10:p:2540-2559
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1580738
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().