Copulas checker-type approximations: Application to quantiles estimation of sums of dependent random variables
A. Cuberos,
E. Masiello and
V. Maume-Deschamps
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 12, 3044-3062
Abstract:
Several approximations of copulas have been proposed in the literature. By using empirical versions of checker-type copulas approximations, we propose non parametric estimators of the copula. Under some conditions, the proposed estimators are copulas and their main advantage is that they can be sampled from easily. One possible application is the estimation of quantiles of sums of dependent random variables from a small sample of the multivariate law and a full knowledge of the marginal laws. We show that estimations may be improved by including in an easy way in the approximated copula some additional information on the law of a sub-vector for example. Our approach is illustrated by numerical examples.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1586936 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:12:p:3044-3062
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1586936
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().