EconPapers    
Economics at your fingertips  
 

A note on joint mix random vectors

Yugu Xiao and Jing Yao

Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 12, 3063-3072

Abstract: This note studies the dependence of joint mix random vectors from the perspective of covariance matrix. We first provide two useful methods in simulations to construct joint mix for Normal distribution. Then, we propose to characterize joint mix by covariance matrix for general marginal distribution. We present some examples showing that our methodology could provide supplementary results to relevant studies in literature.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1586937 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:12:p:3063-3072

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2019.1586937

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:49:y:2020:i:12:p:3063-3072