Regression model for surrogate data in high dimensional statistics
Firas Ibrahim,
Ali Hajj Hassan,
Jacques Demongeot and
Mustapha Rachdi
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 13, 3206-3227
Abstract:
This paper deals with the problem of estimating the regression of a surrogated scalar response variable given a functional random one. We construct an estimator of the regression operator by using, in addition to the available (true) response data, a surrogate data. We then establish some asymptotic properties of the constructed estimator in terms of the almost-complete and the quadratic mean convergences. Notice that the obtained results generalize a part of the results obtained in the finite dimensional framework. Finally, an illustration on the applicability of our results on both simulated data and a real dataset was realized. We have thus shown the superiority of our estimator on classical estimators when we are lacking complete data.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1586940 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:13:p:3206-3227
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1586940
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().