EconPapers    
Economics at your fingertips  
 

Extended binomial AR(1) processes with generalized binomial thinning operator

Yao Kang, Dehui Wang and Kai Yang

Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 14, 3498-3520

Abstract: In this article, we introduce an extended binomial AR(1) model based on the generalized binomial thinning operator. This operator relaxes the independence assumption of the binomial thinning operator and contains dependent Bernoulli counting series. The new model contains the binomial AR(1) model as a particular case. Some probabilistic and statistical properties are explored. Estimators of the model parameters are derived by conditional maximum likelihood (CML), conditional least squares (CLS) and weighted conditional least squares (WCLS) methods. Some asymptotic properties and numerical results of the estimators are studied. The good performance of the new model is illustrated, among other competitive models in the literature, by an application to the monthly drunken driving counts.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1589519 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:14:p:3498-3520

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2019.1589519

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:49:y:2020:i:14:p:3498-3520