Parameter estimation approaches to tackling measurement error and multicollinearity in ordinal probit models
Jing Guan and
Yunfeng Zhao
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 16, 3835-3859
Abstract:
The regression model with ordinal outcome has been widely used in a lot of fields because of its significant effect. Moreover, predictors measured with error and multicollinearity are long-standing problems and often occur in regression analysis. However there are not many studies on dealing with measurement error models with generally ordinal response, even fewer when they suffer from multicollinearity. The purpose of this article is to estimate parameters of ordinal probit models with measurement error and multicollinearity. First, we propose to use regression calibration and refined regression calibration to estimate parameters in ordinal probit models with measurement error. Second, we develop new methods to obtain estimators of parameters in the presence of multicollinearity and measurement error in ordinal probit model. Furthermore we also extend all the methods to quadratic ordinal probit models and talk about the situation in ordinal logistic models. These estimators are consistent and asymptotically normally distributed under general conditions. They are easy to compute, perform well and are robust against the normality assumption for the predictor variables in our simulation studies. The proposed methods are applied to some real datasets.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1592193 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:16:p:3835-3859
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1592193
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().