Addressing the effect of parameter estimation on phase II monitoring of multivariate multiple linear profiles via a new cluster-based approach
Ahmad Ahmadi Yazdi,
Ali Zeinal Hamadani and
Amirhossein Amiri
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 17, 4117-4132
Abstract:
Profile monitoring is applied when the quality of a product or a process can be determined by the relationship between a response variable and one or more independent variables. In most Phase II monitoring approaches, it is assumed that the process parameters are known. However, it is obvious that this assumption is not valid in many real-world applications. In fact, the process parameters should be estimated based on the in-control Phase I samples. In this study, the effect of parameter estimation on the performance of four Phase II control charts for monitoring multivariate multiple linear profiles is evaluated. In addition, since the accuracy of the parameter estimation has a significant impact on the performance of Phase II control charts, a new cluster-based approach is developed to address this effect. Moreover, we evaluate and compare the performance of the proposed approach with a previous approach in terms of two metrics, average of average run length and its standard deviation, which are used for considering practitioner-to-practitioner variability. In this approach, it is not necessary to know the distribution of the chart statistic. Therefore, in addition to ease of use, the proposed approach can be applied to other type of profiles. The superior performance of the proposed method compared to the competing one is shown in terms of all metrics. Based on the results obtained, our method yields less bias with small-variance Phase I estimates compared to the competing approach.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1594303 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:17:p:4117-4132
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1594303
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().