An asymmetric multivariate weibull distribution
Višnja Jurić,
Tomasz J. Kozubowski and
Mihael Perman
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 18, 4394-4412
Abstract:
A class of multivariate laws as an extension of univariate Weibull distribution is presented. A well known representation of the asymmetric univariate Laplace distribution is used as the starting point. This new family of distributions exhibits some similarities to the multivariate normal distribution. Properties of this class of distributions are explored including moments, correlations, densities and simulation algorithms. The distribution is applied to model bivariate exchange rate data. The fit of the proposed model seems remarkably good. Parameters are estimated and a bootstrap study performed to assess the accuracy of the estimators.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1599949 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:18:p:4394-4412
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1599949
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().