EconPapers    
Economics at your fingertips  
 

Gamma mixture of generalized error distribution

Zhengyuan Wei, Suping Li, Qiao Li, Yucan Yu and Xiaoyang Zheng

Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 19, 4819-4833

Abstract: A new symmetric heavy-tailed distribution, namely gamma mixture of generalized error distribution is defined by scaling generalized error distribution with gamma distribution, its probability density function, k-moment, skewness and kurtosis are derived. After tedious calculation, we also give the Fisher information matrix, moment estimators and maximum likelihood estimators for the parameters of gamma mixture of generalized error distribution. In order to evaluate the effectiveness of the point estimators and the stability of Fisher information matrix, extensive simulation experiments are carried out in three groups of parameters. Additionally, the new distribution is applied to Apple Inc. stock (AAPL) data and compared with normal distribution, F-S skewed standardized t distribution and generalized error distribution. It is found that the new distribution has better fitting effect on the data under the Akaike information criterion (AIC). To a certain extent, our results enrich the probability distribution theory and develop the scale mixture distribution, which will provide help and reference for financial data analysis.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1609037 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:19:p:4819-4833

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2019.1609037

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:49:y:2020:i:19:p:4819-4833