Gamma mixture of generalized error distribution
Zhengyuan Wei,
Suping Li,
Qiao Li,
Yucan Yu and
Xiaoyang Zheng
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 19, 4819-4833
Abstract:
A new symmetric heavy-tailed distribution, namely gamma mixture of generalized error distribution is defined by scaling generalized error distribution with gamma distribution, its probability density function, k-moment, skewness and kurtosis are derived. After tedious calculation, we also give the Fisher information matrix, moment estimators and maximum likelihood estimators for the parameters of gamma mixture of generalized error distribution. In order to evaluate the effectiveness of the point estimators and the stability of Fisher information matrix, extensive simulation experiments are carried out in three groups of parameters. Additionally, the new distribution is applied to Apple Inc. stock (AAPL) data and compared with normal distribution, F-S skewed standardized t distribution and generalized error distribution. It is found that the new distribution has better fitting effect on the data under the Akaike information criterion (AIC). To a certain extent, our results enrich the probability distribution theory and develop the scale mixture distribution, which will provide help and reference for financial data analysis.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1609037 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:19:p:4819-4833
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1609037
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().