Goodness-of-fit tests for centralized Wishart processes
Gustav Alfelt,
Taras Bodnar and
Joanna Tyrcha
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 20, 5060-5090
Abstract:
In this paper we present several goodness-of-fit tests for the centralized Wishart process, a popular matrix-variate time series model used to capture the stochastic properties of realized covariance matrices. The new test procedures are based on the extended Bartlett decomposition derived from the properties of the Wishart distribution and allows to obtain sets of independently and standard normally distributed random variables under the null hypothesis. Several tests for normality and independence are then applied to these variables in order to support or to reject the underlying assumption of a centralized Wishart process. In order to investigate the influence of estimated parameters on the suggested testing procedures in the finite-sample case, a simulation study is conducted. Finally, the new test methods are applied to real data consisting of realized covariance matrices computed for the returns on six assets traded on the New York Stock Exchange.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1612917 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:20:p:5060-5090
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1612917
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().