Strong convergence properties for partial sums of asymptotically negatively associated random vectors in Hilbert spaces
Kunpeng Wang and
Xuejun Wang
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 22, 5578-5586
Abstract:
In this paper, we investigate the almost sure convergence for partial sums of asymptotically negatively associated (ANA, for short) random vectors in Hilbert spaces. The Khintchine-Kolmogorov type convergence theorem, three series theorem and the Kolmogorov type strong law of large numbers for partial sums of ANA random vectors in Hilbert spaces are obtained. The results obtained in the paper generalize some corresponding ones for independent random vectors and negatively associated random vectors in Hilbert spaces.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1620279 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:22:p:5578-5586
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1620279
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().