Weak and strong laws of large numbers for sub-linear expectation
Cheng Hu
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 2, 430-440
Abstract:
In this paper, we derive a new form of weak laws of large numbers for sub-linear expectation and establish the equivalence relation among this new form and the other two forms of weak laws of large numbers for sub-linear expectation. Moreover, we obtain the strong laws of large numbers for sub-linear expectation under a general moment condition by applying our new weak laws of large numbers.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1543771 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:2:p:430-440
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1543771
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().