EconPapers    
Economics at your fingertips  
 

Alternative expectation formulas for real-valued random vectors

Haruhiko Ogasawara

Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 2, 454-470

Abstract: When the elements of a random vector take any real values, formulas of product moments are obtained for continuous and discrete random variables using distribution/survival functions. The random product can be that of strictly increasing functions of random variables. For continuous cases, the derivation based on iterated integrals is employed. It is shown that Hoeffding’s covariance lemma is algebraically equal to a special case of this result. For discrete cases, the elements of a random vector can be non-integers and/or unequally spaced. A discrete version of Hoeffding’s covariance lemma is derived for real-valued random variables.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1543773 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:2:p:454-470

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1543773

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:49:y:2020:i:2:p:454-470