Optimal confidence intervals for the geometric parameter
Mo Yang and
Borek Puza
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 3, 590-606
Abstract:
This article discusses optimal confidence estimation for the geometric parameter and shows how different criteria can be used for evaluating confidence sets within the framework of tail functions theory. The confidence interval obtained using a particular tail function is studied and shown to outperform others, in the sense of having smaller width or expected width under a specified weight function. It is also shown that it may not be possible to find the most powerful test regarding the parameter using the Neyman-Pearson lemma. The theory is illustrated by application to a fecundability study.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1549242 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:3:p:590-606
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1549242
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().