On the robustness properties for maximum likelihood estimators of parameters in exponential power and generalized T distributions*
Mehmet Niyazi Çankaya and
Olcay Arslan
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 3, 607-630
Abstract:
Examining the robustness properties of maximum likelihood (ML) estimators of parameters in exponential power and generalized t distributions has been considered together. The well-known asymptotic properties of ML estimators of location, scale and added skewness parameters in these distributions are studied. The ML estimators for location, scale and scale variant (skewness) parameters are represented as an iterative reweighting algorithm (IRA) to compute the estimates of these parameters simultaneously. The artificial data are generated to examine performance of IRA for ML estimators of parameters simultaneously. We make a comparison between these two distributions to test the fitting performance on real data sets. The goodness of fit test and information criteria approve that robustness and fitting performance should be considered together as a key for modeling issue to have the best information from real data sets.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1549243 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:3:p:607-630
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1549243
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().