EconPapers    
Economics at your fingertips  
 

Shrinkage estimation of location parameters in a multivariate skew-normal distribution

Tatsuya Kubokawa, William E. Strawderman and Ryota Yuasa

Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 8, 2008-2024

Abstract: This paper studies decision theoretic properties of Stein type shrinkage estimators in simultaneous estimation of location parameters in a multivariate skew-normal distribution with known skewness parameters under a quadratic loss. The benchmark estimator is the best location equivariant estimator which is minimax. A class of shrinkage estimators improving on the best location equivariant estimator is constructed when the dimension of the location parameters is larger than or equal to four. An empirical Bayes estimator is also derived, and motivated from the Bayesian procedure, we suggest a simple skew-adjusted shrinkage estimator and show its dominance property. The performances of these estimators are investigated by simulation.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1568481 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:8:p:2008-2024

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2019.1568481

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:49:y:2020:i:8:p:2008-2024