EconPapers    
Economics at your fingertips  
 

Bayesian modeling of multivariate loss reserving data based on scale mixtures of multivariate normal distributions: estimation and case influence diagnostics

Monir Goudarzi and Mohammad Zokaei

Communications in Statistics - Theory and Methods, 2020, vol. 50, issue 21, 4934-4962

Abstract: One of the most important problems in general insurance is estimating the loss reserve distribution. In this article, we develop Bayesian multivariate loss reserving models for cases where losses and random effects are assumed to be distributed under the scale mixtures of multivariate normal (SMMN) distributions. This class of distributions, which contains heavy-tailed multivariate distributions such as student’s t, Pearson type VII, variance-gamma, slash and contaminated normal distributions, can be often used for robust inferences; when the assumptions of normality become questionable. The hierarchical structure of the SMMN representation has the advantage that under a Bayesian paradigm, the parameter estimation is simplified by sampling from multivariate normal distribution using Markov Chain Monte Carlo (MCMC) methods. A Bayesian case deletion influence diagnostics based on q-divergence measures is also presented. Further, simulated and real data sets are analyzed, where we show that the models under the Pearson type VII and the variance-gamma distributions outperform the usual normal models.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1520883 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:50:y:2020:i:21:p:4934-4962

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1520883

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:50:y:2020:i:21:p:4934-4962