EconPapers    
Economics at your fingertips  
 

Empirical best linear unbiased predictors in multivariate nested-error regression models

Tsubasa Ito and Tatsuya Kubokawa

Communications in Statistics - Theory and Methods, 2021, vol. 50, issue 10, 2224-2249

Abstract: For analyzing unit-level multivariate data in small area estimation, we consider the multivariate nested error regression model (MNER) and provide the empirical best linear unbiased predictor (EBLUP) of a small area characteristic based on second-order unbiased and consistent estimators of the ‘within’ and ‘between’ multivariate components of variance. The second-order approximation of the mean squared error (MSE) matrix of the EBLUP and its unbiased estimator are derived in closed forms. The confidence interval with second-order accuracy is also provided analytically.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1662048 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:50:y:2021:i:10:p:2224-2249

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2019.1662048

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:50:y:2021:i:10:p:2224-2249