A Bayesian approach to degradation modeling and reliability assessment of rolling element bearing
G. Prakash
Communications in Statistics - Theory and Methods, 2021, vol. 50, issue 23, 5453-5474
Abstract:
This paper presents two Bayesian hierarchical models—one utilizing the life-time data and other using the structural health monitoring (SHM) data, for degradation modeling and reliability assessment of rolling element bearings. The main advantage of the proposed life-time data based model is that, it accounts for the variability in failure times caused due to the difference in material properties, initial degradation, operating and environmental conditions by introducing Bayesian hierarchy in the model parameters. On the other hand, SHM data (such as vibration and strain) based model focuses on stochastic nature of bearing degradation, and models it using a two-phase Wiener process. In this model, the point of phase-transition is the time when the damage initiates. The detection of such a point is undertaken using Bayesian change point algorithms. For both the models, the model parameters and reliability are updated as more data becomes available. In this manner, the prior domain knowledge and life-time data or SHM data collected from the field can effectively be integrated to get updated reliability. Two case studies for rolling element bearings are presented to demonstrate the applicability to life-time as well as SHM data.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2020.1734826 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:50:y:2021:i:23:p:5453-5474
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2020.1734826
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().