EconPapers    
Economics at your fingertips  
 

Penalized estimation in finite mixture of ultra-high dimensional regression models

Shiyi Tang and Jiali Zheng

Communications in Statistics - Theory and Methods, 2022, vol. 51, issue 17, 5971-5992

Abstract: In this paper, we propose a penalized estimation method for finite mixture of ultra-high dimensional regression models. A two-step procedure is explored. Firstly, we conduct order selection with the number of components unknown. Then variable selection is applied to ultra-high dimensional regression models. A specific EM algorithm is designed to maximize penalized log-likelihood function. We demonstrate our method by numerical simulations which performs well. Further, an empirical study of return on equity (ROE) prediction is shown to consolidate our methodology.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2020.1851717 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:51:y:2022:i:17:p:5971-5992

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2020.1851717

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:51:y:2022:i:17:p:5971-5992