Leptokurtic moment-parameterized elliptically contoured distributions with application to financial stock returns
Luca Bagnato,
Antonio Punzo and
Maria Zoia
Communications in Statistics - Theory and Methods, 2022, vol. 51, issue 2, 486-500
Abstract:
This article shows how multivariate elliptically contoured (EC) distributions, parameterized according to the mean vector and covariance matrix, can be built from univariate standard symmetric distributions. The obtained distributions are referred to as moment-parameterized EC (MEC) herein. As a further novelty, the article shows how to polynomially reshape MEC distributions and obtain distributions, called leptokurtic MEC (LMEC), having probability density functions characterized by a further parameter expressing their excess kurtosis with respect to the parent MEC distributions. Two estimation methods are discussed: the method of moments and the maximum likelihood. For illustrative purposes, normal, Laplace, and logistic univariate densities are considered to build MEC and LMEC models. An application to financial returns of a set of European stock indexes is finally presented.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2020.1751202 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:51:y:2022:i:2:p:486-500
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2020.1751202
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().