EconPapers    
Economics at your fingertips  
 

Tail variance for Generalized Skew-Elliptical distributions

Esmat Jamshidi Eini and Hamid Khaloozadeh

Communications in Statistics - Theory and Methods, 2022, vol. 51, issue 2, 519-536

Abstract: Notable changes in financial markets have required the development of a standard structure for risk measurement, and obtaining an appropriate risk measurement from historical data is the challenge that is addressed in this article. In recent years, insurance and investment experts are interested in focusing on the use of the tail conditional expectation (TCE) because it has usable and desirable features in different situations. It is well-known that the tail conditional expectation as a risk measurement provides information about the mean of the tail of the loss distribution, while the tail variance (TV) measures the deviation of the loss from this mean along the tail of the distribution. In this paper, we present a theorem that extends the tail variance formula from the elliptical distributions to a rich class of Generalized Skew-Elliptical (GSE) distributions. We develop this theory for the four main classes of skew-elliptical distributions, including the Skew-Normal, Skew-Student-t, Skew-Logistic and Skew-Laplace distributions and obtain the proposed TV measure for them.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2020.1751853 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:51:y:2022:i:2:p:519-536

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2020.1751853

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:51:y:2022:i:2:p:519-536