Nonparametric K-means algorithm with applications in economic and functional data
Zhangmei Feng and
Jiamin Zhang
Communications in Statistics - Theory and Methods, 2022, vol. 51, issue 2, 537-551
Abstract:
Inspired by the well-known relationship between K-means algorithm and Expectation-Maximization (EM) algorithm for mixture models, we propose nonparametric K-means algorithm for estimation of nonparametric mixture of regressions and mixture of Gaussian processes. The proposed methods are illustrated by extensive numerical simulations, comparisons, and analysis of two real datasets. Simulation studies and applications demonstrate that our method is an effective and competitive procedure for modified EM algorithm in nonparametric mixture settings.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2020.1752383 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:51:y:2022:i:2:p:537-551
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2020.1752383
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().