Semi-recursive kernel conditional density estimators under random censorship and dependent data
Ali Laksaci,
Salah Khardani and
Sihem Semmar
Communications in Statistics - Theory and Methods, 2022, vol. 51, issue 7, 2116-2138
Abstract:
In this work, we extend to the case of the strong mixing data the results of Khardani and Semmar. A kernel-type recursive estimator of the conditional density function is introduced. We study the properties of these estimators and compare them with Rosemblatt’s nonrecursive estimator. Then, a strong consistency rate as well as the asymptotic distribution of the estimator are established under an α-mixing condition. A simulation study is considered to show the performance of the proposed estimator.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2020.1764038 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:51:y:2022:i:7:p:2116-2138
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2020.1764038
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().