EconPapers    
Economics at your fingertips  
 

Robust factor models for high-dimensional time series and their forecasting

Xiaodong Bai and Li Zheng

Communications in Statistics - Theory and Methods, 2023, vol. 52, issue 19, 6806-6819

Abstract: This paper deals with the factor modeling and forecasting for high-dimensional time series with additive outliers. Under the assumption that the sample size n and the dimension of time series p tend to infinity together, the asymptotic properties of several robust estimators are established, including estimation errors and forecast errors. We also propose a detailed algorithm of constructing bootstrap prediction intervals for the high-dimensional time series. We show the superiority of the approach by both simulation studies and an application to the daily air quality index for the main cities in the Yangtze River Delta region of China.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2022.2033777 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:52:y:2023:i:19:p:6806-6819

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2022.2033777

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:52:y:2023:i:19:p:6806-6819