EconPapers    
Economics at your fingertips  
 

Efficient estimation method for generalized ARFIMA models

S. S. Pandher, S. Hossain, K. Budsaba and A. Volodin

Communications in Statistics - Theory and Methods, 2023, vol. 52, issue 23, 8515-8537

Abstract: This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that some covariates are not statistically significant for the response. To define the pretest and shrinkage estimators, we fit two models: one includes all the covariates and the others are subject to linear constraint based on the auxiliary information of the insignificant covariates. The unrestricted and restricted estimators are then combined optimally to get the pretest and shrinkage estimators. We enlighten the statistical properties of the shrinkage and pretest estimators in terms of asymptotic bias and risk. We examine the comparative performance of pretest and shrinkage estimators with respect to unrestricted maximum partial likelihood estimator (UMPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the UMPLE when the number of significant covariates exceeds two. Monte Carlo simulations are conducted to examine the relative performance of the proposed estimators to the UMPLE. An empirical application is used for the usefulness of our proposed estimation strategies.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2022.2064503 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:52:y:2023:i:23:p:8515-8537

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2022.2064503

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:52:y:2023:i:23:p:8515-8537