EconPapers    
Economics at your fingertips  
 

Asymptotic properties of asymmetric kernel estimators for non-negative and censored data

Sarah Ghettab and Zohra Guessoum

Communications in Statistics - Theory and Methods, 2022, vol. 53, issue 8, 2977-3004

Abstract: Let {Xi,i≥1} be a sequence of independent and identically distributed random variables with distribution function F and probability density function f. We propose new type of kernel estimators for density and hazard functions that perform well at the boundary, when the variable of interest is positive and right censored. The estimators are constructed using asymmetric kernels with expectation 1. We establish uniform strong consistency rates and we study asymptotic properties and normality of the resulting estimators. A large simulation study is conducted to comfort the theoretical results. An application to real data is done.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2022.2150059 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:53:y:2022:i:8:p:2977-3004

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2022.2150059

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:53:y:2022:i:8:p:2977-3004