Positive definite functions, stationary covariance functions, and Bochner’s theorem: Some results and a critical overview
Donato Posa
Communications in Statistics - Theory and Methods, 2024, vol. 53, issue 15, 5612-5628
Abstract:
In this article, the link among the classes of stationary covariance functions, positive definite functions, and the class of functions defined through Bochner’s theorem has been properly analyzed: indeed, in the literature, the relationship among the above classes of functions has often generated some misunderstanding. Moreover, in order to provide an exhaustive outline on the above classes, a generalization of Bochner’s theorem has been pointed out. For what concerns all the properties and results given in this article for positive definite and strictly positive definite functions, it has been underlined which of them are very general, that is, they are valid for any covariance function, hence they are independent from Bochner’s theorem and which of them are strictly related to Bochner’s representation, which provides a complete characterization for the special subclass of continuous covariance functions. On the other hand, several applications in time series, in spatial and, more generally, in spatiotemporal literature utilize covariance models which are characterized by a discontinuity at the origin, that is, a nugget effect, or are zero almost everywhere, hence these covariance functions cannot be represented through Bochner’s theorem. Some useful results on the subset of the covariance functions, which are strictly positive definite and occur in all the interpolation problems, have also been given.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2023.2223780 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:53:y:2024:i:15:p:5612-5628
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2023.2223780
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().