A sample size-dependent prior strategy for bridging the Bayesian-frequentist gap in point null hypothesis testing
Qiu-Hu Zhang and
Yi-Qing Ni
Communications in Statistics - Theory and Methods, 2024, vol. 53, issue 21, 7733-7745
Abstract:
Bayes factor, as a measure of the evidence provided by the data in favor of one hypothesis against its alternative, can be highly sensitive to the prior distributions of parameters involved in the hypotheses as well as to the sample size. This may cause a noticeable difference between the Bayesian and classical (frequentist) hypothesis testing results. In the worst-case scenario, the two results are in conflict, which is termed the Jeffreys-Lindley paradox. In this article, we propose a sample size-dependent prior strategy to bridge the Bayesian-frequentist gap from a decision-theoretical perspective. The central idea behind the proposed strategy is to adaptively adjust prior distributions for the parameters in line with the sample size to manage the risk of type I error in Bayesian hypothesis testing at the same level as that prespecified in frequentist hypothesis testing. The proposed strategy is inspired by the work of Maurice Stevenson Bartlett (M.S. Bartlett, A comment on D. V. Lindley’s statistical paradox, Biometrika, 44, 533–534, 1957), who suggested a sample size-dependent prior to make the Bayes factor independent of the sample size. In contrast to his work, we propose a strategy that leverages the use of sample size-dependent priors in Bayesian hypothesis testing and risk management when deciding the two hypotheses. To demonstrate the effectiveness of the proposed strategy, normal mean tests in the cases that (i) the variance is known (z-test) and (ii) the variance is unknown (t-test) are examined. It turns out that the Bayesian testing results coming out from the proposed strategy become consistent with their frequentist counterparts and the Jeffreys-Lindley paradox disappears.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2023.2273202 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:53:y:2024:i:21:p:7733-7745
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2023.2273202
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().