The effect of sample size and missingness on inference with missing data
Julian Morimoto
Communications in Statistics - Theory and Methods, 2024, vol. 53, issue 9, 3292-3311
Abstract:
When are inferences (whether Direct-Likelihood, Bayesian, or Frequentist) obtained from partial data valid? This article answers this question by offering a new asymptotic theory about inference with missing data that is more general than existing theories. It proves that as the sample size increases and the extent of missingness decreases, the average-loglikelihood function generated by partial data and that ignores the missingness mechanism will converge in probability to that which would have been generated by complete data; and if the data are Missing at Random, this convergence depends only on sample size. Thus, inferences from partial data, such as posterior modes, confidence intervals, likelihood ratios, test statistics, and indeed, all quantities or features derived from the partial-data loglikelihood function, will be consistently estimated. Additionally, the missing data mechanism has asymptotically no effect on parameter estimation and hypothesis testing if the data are Missing at Random. This adds to previous research which has only proved the consistency and asymptotic normality of the posterior mode. Practical implications are discussed, and the theory is illustrated through simulation using a previous study of International Human Rights Law.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2022.2152287 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:53:y:2024:i:9:p:3292-3311
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2022.2152287
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().