EconPapers    
Economics at your fingertips  
 

A multiple imputation method using population information

Tadayoshi Fushiki

Communications in Statistics - Theory and Methods, 2024, vol. 54, issue 12, 3476-3493

Abstract: Multiple imputation (MI) is effectively used to deal with missing data when the missing mechanism is missing at random. However, MI may not be effective when the missing mechanism is not missing at random (NMAR). In such cases, additional information is required to obtain an appropriate imputation. Pham et al. (2019) proposed the calibrated-δ adjustment method, which is a multiple imputation method using population information. It provides appropriate imputation in two NMAR settings. However, the calibrated-δ adjustment method has two problems. First, it can be used only when one variable has missing values. Second, the theoretical properties of the variance estimator have not been provided. This article proposes a multiple imputation method using population information that can be applied when several variables have missing values. The proposed method is proven to include the calibrated-δ adjustment method. It is shown that the proposed method provides a consistent estimator for the parameter of the imputation model in an NMAR situation. The asymptotic variance of the estimator obtained by the proposed method and its estimator are also given.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2024.2395880 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:54:y:2024:i:12:p:3476-3493

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2024.2395880

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-05-02
Handle: RePEc:taf:lstaxx:v:54:y:2024:i:12:p:3476-3493