EconPapers    
Economics at your fingertips  
 

Minimum density power divergence estimation for the generalized exponential distribution

Arnab Hazra

Communications in Statistics - Theory and Methods, 2025, vol. 54, issue 4, 1050-1070

Abstract: Statistical modeling of rainfall data is an active research area in agro-meteorology. The most common models fitted to such datasets are exponential, gamma, log-normal, and Weibull distributions. As an alternative to some of these models, the generalized exponential (GE) distribution was proposed by Gupta and Kundu (2001a). Rainfall (specifically for short periods) datasets often include outliers, and thus, a proper robust parameter estimation procedure is necessary. Here, we use the popular minimum density power divergence estimation (MDPDE) procedure developed by Basu et al. (1998) for estimating the GE parameters. We derive the analytical expressions for the estimating equations and asymptotic distributions. We analytically compare MDPDE with maximum likelihood estimation in terms of robustness, through an influence function analysis. Besides, we study the asymptotic relative efficiency of MDPDE analytically for different parameter settings. We apply the proposed technique to some simulated datasets and two rainfall datasets from Texas, United States. The results indicate superior performance of MDPDE compared to the other existing estimation techniques in most of the scenarios.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2024.2329768 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:54:y:2025:i:4:p:1050-1070

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2024.2329768

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:54:y:2025:i:4:p:1050-1070