Divergences based Bayesian inference with censored data
Mohamed Boukeloua
Communications in Statistics - Theory and Methods, 2025, vol. 54, issue 8, 2251-2288
Abstract:
In this work, we deal with some Bayesian inference problems in the presence of right censored data. First, we propose a dual ϕ−divergence Bayes type estimators for parametric models and we establish their asymptotic normality. To establish this result, we need a uniform strong law of large numbers that we prove as well. Then, we consider the problem of prior distributions construction for model selection using ϕ−divergences. Finally, we consider the problem of the predictive density estimation on the basis of ϕ−divergences. We apply an expansion result of the generalized Bayesian predictive density on two parametric models widely used in survival analysis, namely the Weibull and the inverse Weibull model, under right censoring. We also check the performances of our proposed methods through simulations and real data applications. The results of these studies show that our proposed dual ϕ−divergence Bayes type estimators are more robust than other Bayesian estimators. Moreover, the generalized Bayesian predictive density performs better than the classical estimative density especially for the inverse Weibull model.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2024.2366893 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:54:y:2025:i:8:p:2251-2288
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2024.2366893
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().