Evaluating the Expected Time to Population Extinction with Semi-Stochastic Models
Benjamin Cairns
Mathematical Population Studies, 2009, vol. 16, issue 3, 199-220
Abstract:
“Semi-stochastic” or “piecewise-deterministic” Markov processes generalize continuous-time Markov chains, allowing for deterministic flow between Markovian jumps. They have been employed as models for the effect of environmental catastrophes on biological populations, for the progress of infectious diseases within and between hosts, and for the management of fisheries. One application is to solve first-exit time problems, which include calculations of the expected time or of the expected value from the present to extinction of processes with state-dependent rewards or costs. A simple and robust numerical method gives the solution of first-exit time problems for a wide range of semi-stochastic processes.
Keywords: extinction; first-exit time; piecewise-deterministic; population process; semi-stochastic; state-dependent (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/08898480903034843 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:16:y:2009:i:3:p:199-220
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898480903034843
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().