Intrinsically Dynamic Multistate Models
Robert Schoen and
Claudia Nau
Mathematical Population Studies, 2009, vol. 16, issue 4, 231-247
Abstract:
Multistate life table models, which follow persons through more than one living state, have found increasing use in demographic analyses. Multistate stable populations, however, are infrequently used because the constant rate assumption is quite strong and such populations can take centuries to approach stability. Dynamic models, that is models where the rates can change over time, are examined to derive a new solution for the size and composition of a multistate population in terms of the sequence of underlying population projection matrices (PPMs). Constraints on the subordinate eigenvalues and the subordinate eigenvectors of the time-varying PPMs produce a model population that grows according to the dominant eigenvalues of each time-specific PPM and has a state composition that depends only on the most recent PPM. The two living state model is examined in detail, relationships between the PPM elements and the size and composition of the model are explored, and two illustrative applications of the model are presented.
Keywords: atomic matrices; dynamic models; eigenstructure; intrinsic growth; multistate population models; population projection matrices (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/08898480903251496 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:16:y:2009:i:4:p:231-247
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898480903251496
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().