Asymptotic Behavior of Cell Populations Described by Two-Type Reducible Age-Dependent Branching Processes With Non-Homogeneous Immigration
Ollivier Hyrien and
Nikolay M. Yanev
Mathematical Population Studies, 2012, vol. 19, issue 4, 164-176
Abstract:
Stem and precursor cells play a critical role in tissue development, maintenance, and repair throughout the life. Often, experimental limitations prevent direct observation of the stem cell compartment, thereby posing substantial challenges to the analysis of such cellular systems. Two-type age-dependent branching processes with immigration are proposed to model populations of progenitor cells and their differentiated progenies. Immigration of cells into the pool of progenitor cells is formulated as a non-homogeneous Poisson process. The asymptotic behavior of the process is governed by the largest of two Malthusian parameters associated with embedded Bellman-Harris processes. Asymptotic approximations to the expectations of the total cell counts are improved by Markov compensators.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/08898480.2012.718934 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:19:y:2012:i:4:p:164-176
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898480.2012.718934
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().