Stability Analysis and Dynamics Preserving Nonstandard Finite Difference Schemes for a Malaria Model
Roumen Anguelov,
Yves Dumont,
Jean Lubuma and
Eunice Mureithi
Mathematical Population Studies, 2013, vol. 20, issue 2, 101-122
Abstract:
When both human and mosquito populations vary, forward bifurcation occurs if the basic reproduction number R 0 is less than one in the absence of disease-induced death. When the disease-induced death rate is large enough, R 0 = 1 is a subcritical backward bifurcation point. The domain for the study of the dynamics is reduced to a compact and feasible region, where the system admits a specific algebraic decomposition into infective and non-infected humans and mosquitoes. Stability results are extended and the possibility of backward bifurcation is clarified. A dynamically consistent nonstandard finite difference scheme is designed.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/08898480.2013.777240 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:20:y:2013:i:2:p:101-122
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898480.2013.777240
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().