Population model with immigration in continuous space
Elena Chernousova,
Ostap Hryniv and
Stanislav Molchanov
Mathematical Population Studies, 2020, vol. 27, issue 4, 199-215
Abstract:
In a population model in continuous space, individuals evolve independently as branching random walks subject to immigration. If the underlying branching mechanism is subcritical, the model has a unique steady state for each value of the immigration intensity. Convergence to the equilibrium is exponentially fast. The resulting dynamics are Lyapunov stable in that their qualitative behavior does not change under suitable perturbations of the main parameters of the model.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/08898480.2019.1626189 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:27:y:2020:i:4:p:199-215
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898480.2019.1626189
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().