Bayesian forecast of the basic reproduction number during the Covid-19 epidemic in Morocco and Italy
Mohamed El Fatini,
Mohamed El Khalifi,
Richard Gerlach and
Roger Pettersson
Mathematical Population Studies, 2021, vol. 28, issue 4, 228-242
Abstract:
In a Covid-19 susceptible-infected-recovered-dead model with time-varying rates of transmission, recovery, and death, the parameters are constant in small time intervals. A posteriori parameters result from the Euler-Maruyama approximation for stochastic differential equations and from Bayes’ theorem. Parameter estimates and 10-day predictions are performed based on Moroccan and Italian Covid-19 data. Mean absolute errors and mean square errors indicate that predictions are of good quality.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/08898480.2021.1941661 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:28:y:2021:i:4:p:228-242
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898480.2021.1941661
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().