A two-sex age-structured population model: Well posedness
Maia Martcheva and
Fabio Milner
Mathematical Population Studies, 1999, vol. 7, issue 2, 111-129
Abstract:
In this paper we consider a two-sex population model proposed by Hoppenstead. We do not assume any special form of the mating function. We address the problem of existence and uniqueness of continuous and classical solutions. We give sufficient conditions for continuous solutions to exist globally and we show that they have in fact a directional derivative in the direction of the characteristic lines and satisfy the equations of the model with the directional derivative replacing the partial derivatives. The existence of classical solutions is established with mild assumptions on the vital rates.
Keywords: Two-sex population model; classical solutions; continuous solutions; directional derivative; sexually transmitted diseases (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/08898489909525450 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:7:y:1999:i:2:p:111-129
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898489909525450
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().