Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis
Mark Read,
Paul S. Andrews,
Jon Timmis and
Vipin Kumar
Mathematical and Computer Modelling of Dynamical Systems, 2011, vol. 18, issue 1, 67-86
Abstract:
For computational agent-based simulation, to become a serious tool for investigating biological systems requires the implications of simulation-derived results to be appreciated in terms of the original system. However, epistemic uncertainty regarding the exact nature of biological systems can complicate the calibration of models and simulations that attempt to capture their structure and behaviour, and can obscure the interpretation of simulation-derived experimental results with respect to the real domain. We present an approach to the calibration of an agent-based model of experimental autoimmune encephalomyelitis (EAE), a mouse proxy for multiple sclerosis (MS), which harnesses interaction between a modeller and domain expert in mitigating uncertainty in the data derived from the real domain. A novel uncertainty analysis technique is presented that, in conjunction with a latin hypercube-based global sensitivity analysis, can indicate the implications of epistemic uncertainty in the real domain. These analyses may be considered in the context of domain-specific knowledge to qualify the certainty placed on the results of in silico experimentation.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2011.601419 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:18:y:2011:i:1:p:67-86
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2011.601419
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().