Mathematical modelling of acute virus influenza A infections
John F. Moxnes and
Kjell Hausken
Mathematical and Computer Modelling of Dynamical Systems, 2012, vol. 18, issue 5, 521-538
Abstract:
This article models the immune system and the virus dynamics of acute influenza infection mathematically. We use the model to study the virus dynamics of some well-known and severe and mild types of viruses. Linkages to well-known models in the literature are illustrated. Simulations are compared with experimental results in vivo by comparing with results from infected ferrets where infection closely resembles those in humans. Good agreement is achieved between the model calculations and the experimental values for influenza A viruses. For the Spanish flu virus H1N1 peak virus load is high and virtually all cells are infected in the nostril. In general, the H1N1 viruses show much more prolonged infections than the H3N2 in the nostril. We suggest that the reason is that unspecific immunity attacks H3N2-budded viruses but not H1N1 viruses.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2012.669387 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:18:y:2012:i:5:p:521-538
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2012.669387
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().