Modelling and analysis of the non-iterative coupling process for co-simulation
Martin Benedikt,
Daniel Watzenig and
Anton Hofer
Mathematical and Computer Modelling of Dynamical Systems, 2013, vol. 19, issue 5, 451-470
Abstract:
Concerning non-iterative co-simulation, stepwise extrapolation of coupling signals is required to solve an overall system of interconnected subsystems. Each extrapolation is some kind of estimation and is directly associated with an estimation error. The introduced disturbance depends significantly on the macro-step size, i.e. the coupling step size, and influences the entire system behaviour. In addition, for synchronization purposes, sampling of the coupling signals can cause aliasing. Instead of analysing the coupling effects in the time domain, as it is commonly practised, we concentrate on a model-based approach to gain more insight into the coupling process. In this work, we consider commonly used polynomial extrapolation techniques and analyse them in the frequency domain. Based on this system-oriented point of view of the coupling process, a relation between the coupling signals and the macro-step size is available. In accordance to the dynamics of the interconnected subsystems, the model-based relation is used to select the most critical parameter, i.e. the macro-step size. Besides a ‘rule of thumb’ for meaningful step-size selection, a co-simulation benchmark example describing a two degree of freedom (2-DOF) mechanical system is used to demonstrate the advantages of modelling and the efficiency of the proposed method.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2013.784340 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:19:y:2013:i:5:p:451-470
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2013.784340
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().